国产一级特黄高清在线大片-天天操天天干天天干天天干-久久午夜亚洲视频精品-国产又粗又长又大视频-欧美日韩国产一卡二卡在线视频-久久久久久美女av-中日韩中文字幕麻豆-最新日韩毛片基地-99热久久这里只有精品10,欧美日韩一区二区三区在线电影 ,久久久久亚洲精品国产日韩精品 ,久久久中文字幕一区

logo

新聞資訊

半導(dǎo)體與器件

微型機(jī)器學(xué)習(xí)(tinyML)在電源管理系統(tǒng)中的應(yīng)用

發(fā)布日期:2024-01-22     705 次

如今,數(shù)據(jù)處理架構(gòu)呈現(xiàn)出一種“分裂”的特性。擁有龐大規(guī)模和計(jì)算能力的“云”計(jì)算成為了關(guān)注焦點(diǎn),而“邊緣”計(jì)算將處理過程置于“一線”,連接著電子設(shè)備與真實(shí)世界。在云端,數(shù)據(jù)存儲(chǔ)量巨大,處理過程需要排隊(duì)和調(diào)度;而在邊緣,處理工作則有針對性地即時(shí)完成。

如今,數(shù)據(jù)處理架構(gòu)呈現(xiàn)出一種“分裂”的特性。擁有龐大規(guī)模和計(jì)算能力的“云”計(jì)算成為了關(guān)注焦點(diǎn),而“邊緣”計(jì)算將處理過程置于“一線”,連接著電子設(shè)備與真實(shí)世界。在云端,數(shù)據(jù)存儲(chǔ)量巨大,處理過程需要排隊(duì)和調(diào)度;而在邊緣,處理工作則有針對性地即時(shí)完成。

這使得系統(tǒng)能夠針對本地指令和應(yīng)用程序反饋?zhàn)龀隹焖夙憫?yīng),同時(shí)減少數(shù)據(jù)流量,以確保處理過程更加安全。當(dāng)然,這兩個(gè)區(qū)域也會(huì)進(jìn)行交互,邊緣節(jié)點(diǎn)將數(shù)據(jù)傳回云端,實(shí)現(xiàn)跨設(shè)備或地點(diǎn)的匯總與分析;而全局指令和固件更新則反向傳遞至邊緣。

這兩種處理環(huán)境都得益于人工智能(AI)和機(jī)器學(xué)習(xí)(ML)的最新發(fā)展。例如,在數(shù)據(jù)中心,包含數(shù)萬顆處理器(主要為GPU)的數(shù)千臺服務(wù)器執(zhí)行大規(guī)模并行計(jì)算,以生成和運(yùn)行ChatGPT等大語言模型(LLM)。從某些指標(biāo)看,這些平臺的性能現(xiàn)在已經(jīng)超越了人類。

在邊緣,處理過程根據(jù)操作算法對反饋傳感器和指令做出反應(yīng)。但借助機(jī)器學(xué)習(xí),算法現(xiàn)也能夠有效地從反饋中學(xué)習(xí);由此改進(jìn)算法及其計(jì)算系數(shù),讓受控過程更為準(zhǔn)確、高效和安全。

云端和邊緣的能耗差異

在能源的使用規(guī)模層面,云計(jì)算和邊緣計(jì)算存在很大的實(shí)際差異。這兩種情況的能耗都必須降至最低;但數(shù)據(jù)中心的電力消耗十分巨大,據(jù)國際能源機(jī)構(gòu)(IEA)估計(jì),約為240-340太瓦時(shí)(TWh),占全球需求的1%-1.3%。人工智能和機(jī)器學(xué)習(xí)將進(jìn)一步加速能源消耗;IEA預(yù)測在未來幾年內(nèi)將增長20%-40%,而這一數(shù)字的歷史數(shù)據(jù)僅為3%左右。

與游戲和視頻流媒體等按需數(shù)據(jù)處理任務(wù)不同,AI包含學(xué)習(xí)和推理兩個(gè)階段;其中,學(xué)習(xí)階段借助數(shù)據(jù)集來訓(xùn)練模型。據(jù)報(bào)道,ChatGPT在這個(gè)過程中消耗了超過1.2TWh的電力。另一方面,根據(jù)de Vries的統(tǒng)計(jì),處于推理或運(yùn)行階段的LLM每天可能需要消耗564MWh的電力。

而在數(shù)據(jù)處理架構(gòu)的另一端,物聯(lián)網(wǎng)(IoT)節(jié)點(diǎn)或可穿戴設(shè)備中的邊緣計(jì)算功耗可能不超過毫瓦級。即使對于電機(jī)控制和電池管理等工業(yè)及電動(dòng)汽車(EV)類應(yīng)用,為控制電路預(yù)留的損耗預(yù)算也很小,無法適應(yīng)AI和機(jī)器學(xué)習(xí)引入帶來的大幅能耗提升。

因此,微型機(jī)器學(xué)習(xí)()已發(fā)展為一個(gè)在設(shè)備上實(shí)施傳感器數(shù)據(jù)分析的應(yīng)用及技術(shù)領(lǐng)域;同時(shí),其也經(jīng)過優(yōu)化,旨在實(shí)現(xiàn)極低功耗。

在具體應(yīng)用中采用機(jī)器學(xué)習(xí)技術(shù)是一個(gè)涉及到多個(gè)維度的問題。舉例來說,可用于電池管理,其目標(biāo)是在盡可能快速、安全并高效充電的同時(shí),以最小的壓力控制放電。電池管理還會(huì)監(jiān)控電池的健康狀況,并主動(dòng)平衡電芯以確保其均衡老化,從而獲得最高的可靠性和使用壽命。

受監(jiān)控的參數(shù)包括單個(gè)電芯的電壓、電流和溫度;管理系統(tǒng)通常需要預(yù)測電池的充電狀態(tài)(SOC)和健康狀況(SOH)。這些參數(shù)均為動(dòng)態(tài)量,與電池的使用歷史及測量參數(shù)間存在復(fù)雜且多變的關(guān)系。

盡管任務(wù)復(fù)雜,但實(shí)現(xiàn)AI處理并不需要使用昂貴的GPU。ARM Cortex M0和M4系列等現(xiàn)代微控制器可輕松勝任電池管理中的機(jī)器學(xué)習(xí)任務(wù),且它們的功耗很低,現(xiàn)已集成至針對該應(yīng)用的專用片上系統(tǒng)(SoC)中。

電池管理IC十分常見,但在實(shí)施機(jī)器學(xué)習(xí)算法的MCU助力下,基于傳感器的歷史和當(dāng)前數(shù)據(jù)的信息與模式可用于更好地預(yù)測SOC及SOH,同時(shí)確保高度安全性。與其它ML應(yīng)用一樣,這需要一個(gè)基于訓(xùn)練數(shù)據(jù)的學(xué)習(xí)階段;數(shù)據(jù)可以來自包含不同環(huán)境條件和多個(gè)電池制造公差的日志記錄;在缺少現(xiàn)場實(shí)際數(shù)據(jù)的情況下,也可以利用建模得到的合成數(shù)據(jù)。

正如AI的本質(zhì)一樣,模型可隨現(xiàn)場數(shù)據(jù)的積累不斷更新,以擴(kuò)大或縮小應(yīng)用規(guī)模,或用于其它類似系統(tǒng)。雖然學(xué)習(xí)過程通常是應(yīng)用投入使用前的一項(xiàng)工作,但也可以成為基于傳感器數(shù)據(jù)的后臺任務(wù),在本地或通過云端進(jìn)行離線處理,以獲得持續(xù)的性能改進(jìn)。自動(dòng)機(jī)器學(xué)習(xí)(AutoML)工具結(jié)合電池管理SoC的評估套件可實(shí)現(xiàn)這一功能。

機(jī)器學(xué)習(xí)模型

在機(jī)器學(xué)習(xí)和電池管理等邊緣應(yīng)用領(lǐng)域中,有多種可供選擇的模型。一個(gè)簡單的分類決策樹所占用資源很少,最多僅需幾千字節(jié)的RAM,但能夠?yàn)榇祟悜?yīng)用提供足夠的功能。該方法可將采集到的數(shù)據(jù)簡單地分為“正?!被颉爱惓!?;示例如圖1所示。


微型機(jī)器學(xué)習(xí)(tinyML)在電源管理系統(tǒng)中的應(yīng)用

圖1:在此決策樹分類器示例中,“類別1” = 正常,“類別0” = 異常

此處使用兩個(gè)參數(shù)來描述多電芯電池組放電過程中的狀態(tài):最強(qiáng)電芯的SOC(充電狀態(tài)),以及最強(qiáng)與最弱電芯間的電壓差。藍(lán)色和白色節(jié)點(diǎn)代表正常數(shù)據(jù);分類區(qū)域用藍(lán)色(“類別0”= 正常)和灰色(“類別1”= 異常)表示。

如要評估輸出數(shù)據(jù)的連續(xù)值,而不僅僅是類別,可以使用更復(fù)雜的回歸決策樹。其它常見的ML模型包括支持向量機(jī)(SVM)、核近似分類器、近鄰分類器、樸素貝葉斯分類器、邏輯回歸和孤立森林。神經(jīng)網(wǎng)絡(luò)建??梢园贏utoML工具中,以增加復(fù)雜度為代價(jià)來提高性能。

一個(gè)ML應(yīng)用程序的整個(gè)開發(fā)過程被稱為“MLOps”,即“ML Operations”,包括數(shù)據(jù)的收集與整理,以及模型的訓(xùn)練、分析、部署和監(jiān)控。圖2以圖形方式展示了使用PAC25140芯片的電池管理應(yīng)用開發(fā)流程;該芯片可監(jiān)控、控制和平衡由多達(dá)20個(gè)電芯組成的串聯(lián)電池組,適用于鋰離子、鋰聚合物或磷酸鐵鋰電池。


微型機(jī)器學(xué)習(xí)(tinyML)在電源管理系統(tǒng)中的應(yīng)用

圖2:上述設(shè)計(jì)示例突出展示了tinyML開發(fā)流程

案例研究:弱電芯檢測

退化電芯檢測是電池SOH監(jiān)測的一部分。這些電芯的特征之一可能體現(xiàn)為在負(fù)載下電池電壓異常偏低。然而,電壓還受實(shí)際放電電流、充電狀態(tài)和溫度的影響,如圖3所示;圖中突出顯示了強(qiáng)弱電芯在不同溫度及負(fù)載電流下的示例曲線。


微型機(jī)器學(xué)習(xí)(tinyML)在電源管理系統(tǒng)中的應(yīng)用

圖3:強(qiáng)、弱電芯的放電曲線

圖3顯示了在電芯電量接近耗盡時(shí),強(qiáng)弱電芯電壓間出現(xiàn)的顯著差異;然而,在此時(shí)檢測到弱電芯可能為時(shí)已晚,無法避免過熱和安全問題。因此,實(shí)施ML成為一種解決方案,從而在放電周期的較早階段從數(shù)據(jù)中尋找相關(guān)模式。

ML方法的有效性在Qorvo進(jìn)行的實(shí)驗(yàn)中得到充分體現(xiàn)。該實(shí)驗(yàn)將一顆弱電芯插入一個(gè)由10顆電芯組成的電池組,并與一個(gè)狀態(tài)良好的電池組進(jìn)行比較。兩組電芯在不同恒定電流倍率和溫度下放電,并生成訓(xùn)練數(shù)據(jù);監(jiān)測參數(shù)包括它們的電流、溫度、最強(qiáng)與最弱電芯電壓差,以及最強(qiáng)電芯的SOC。

在20個(gè)放電周期中,每10秒對參數(shù)進(jìn)行同步采樣,并使用表1所列的不同模型進(jìn)行分析。將結(jié)果與20個(gè)放電周期的獨(dú)立測試數(shù)據(jù)進(jìn)行比較,顯示兩種方法的一致性非常接近;隨著訓(xùn)練樣本的增加,其一致性將進(jìn)一步提高。

微型機(jī)器學(xué)習(xí)(tinyML)在電源管理系統(tǒng)中的應(yīng)用

圖4:從不同ML模型的訓(xùn)練及測試數(shù)據(jù)中提取示例結(jié)果

SoC足以實(shí)現(xiàn)對ML的支持

雖然當(dāng)前AI的關(guān)注焦點(diǎn)集中在大規(guī)模、高功率應(yīng)用;然而,針對電池監(jiān)測等應(yīng)用,使用MCU和tinyML技術(shù) 的“邊緣部署型”AI也可以成為高性能、低功耗解決方案的一部分。在這種場景下,SoC解決方案擁有所需的全部處理能力,并可集成各種機(jī)器學(xué)習(xí)算法。

所有必要的傳感器和通信接口均已內(nèi)置;此外,SoC還擁有豐富的評估與設(shè)計(jì)工具生態(tài)系統(tǒng)的支持。


為您精選

尋找更多銷售、技術(shù)和解決方案的信息?

聯(lián)系我們
聯(lián)系電話: 020-2204 2442
郵箱:Sales@greentest.com.cn
微信客服二維碼
91国产精品秦先生-国产精品久久久久久久久91-久久婷婷综合网伊人丁香-日韩av不卡免费观看 | 97超碰成人免费在线-91国精产品一区二区三区播放-久久精品美女诱惑-国产人成午夜免费看 | 久久久久久在线综合-国内久久婷婷六月综合欲色啪-福利一区二区中文字幕-痴汉电车一区二区三区 | 九九热精品在线首页-日韩少妇熟女一区二区-日韩一卡二卡视频在线观看-色综合之中文字幕麻豆 | 麻豆免费视频 国产在线观看-乱子伦国产精品视频-女人高潮二区三区四区av-日韩中文字幕一区av | 久久精品在线观看视频-欧美在线观看视频一区二区三区-91污污污视频网站-成人国产精品免费观看视频 | 婷婷激情久久综合-午夜精品久久婷婷-精品一区二区三区四区在线视频-麻豆精品传媒一二三区蜜桃 | 精品视频免费观看一区二区-高清少妇相奸一区二区三区视频-久久人妻精品在线观看-成人精品一区二区三区日本久久9 | 性欧美极品xxxx欧美一区二区-伊人色综合久久天天看-久久婷婷综合五月天啪网-久久久久国精品产熟女久色 | 亚洲成人av在线一区二区三区-91大神仓本c在线-99re久久精品国产-97高清视频在线观看免费 | 91久久婷婷国产麻豆精品电-日韩人妻视频在线中文字幕观看-久久不卡一区二区三区-欧美交换性一区二区三区 | 欧美激情一区二区三区bbb-91精品啪在线观看国产传媒-国产一区久久999-久久久久久久综合综合狠狠 国产视频欧美视频一区二区-久久久久久久久久久久久久久久9-久久er热这里只有精品视频-久久综合亚洲久久另类 | 午夜激情网婷婷av-亚洲av网站久久久-在线观看欧美精选日本大胆-av乱色熟女一区二区三区 | 国产99视频精品播放-热re99久久精品国产精品10-蜜臀少妇刺激精品av-婷婷在线免费观看视频 | 亚洲一区二区三区四区在线观看-欧美老熟女艳星-国产精品久久久久久久婷婷-日韩一区二区三区高清视频在线播放 | 国内精品在线小视频-人妻一区二区三区久久久-人妻少妇久久综合黑人-久久精品亚洲乱码伦伦中文 | 97久久精品人妻一区二区三区-中文字幕日韩一区二区三区不卡-国产成人精品在线播放-97香蕉久久国产超碰青 | 免费观看欧美在线视频-久久re99在线视频-女人高潮喷水视频在线观看-91福利小视频 | 激情五月激情五月激情五月-日日噜噜噜噜噜夜夜爽亚洲精品-麻豆av男人的天堂-国产av中文网 | 欧美日韩中文一区二区-av亚洲av日韩电影-久久久久欧美老熟女一区二区-久久亚洲熟妇熟女ⅹxxx蜜桃 | 精品人妻一区二区三区四区日-2020在线观看日韩视频-日韩黄色片久久久-久久精品久久久国产 | 午夜精品久久久久久久福利-日韩激情小视频在线观看-丰满大屁股国产熟女在线-日本高清中文字幕高清在线 | 天天舔天天舔天天舔-国产麻豆精品在线免费-国产色婷婷口爆吞精-蜜臀av性久久久久蜜臀aⅴ四虎 | 男人插女人骚998-久久久一区二区免费看-日韩av 亚洲精品-懂色av一区二区三区性色av | 18禁国产精品久久久久久久久-亚洲制服丝袜人妻中文字幕-美日韩视频在线看-日韩午夜精选在线 | 国产精品色呦呦视频-国产精品免费看91-人妻少妇久久中文字幕蜜桃-精品婷婷久久观看视频 | 91深夜天堂啪啪啪-av天堂中文字幕精品-91精品福利少妇午夜-久久精品熟妇丰满人妻77777 | 精品免费一区二区三区四区视频-久久久亚洲福利精品午夜-ff14一区二区三区分别是啥-18禁国产精品久久久久久不卡 | 亚洲av色噜噜网站在线观看-日韩精品人妻中文字-97在线公开视频免费播放-91九色大屁股人妻 | 国产成人a人亚洲精-天天射天天射天天射天天操-亚洲欧美日韩精品久久奇米色影视-日韩手机av在线播放 | 大香蕉之五月婷大熟女-日韩中文字幕成人网-77777色婷婷av一区二区三区在线-激情久久五月影院 | 亚洲第一毛片av在线-久久久久久久久久久久一级-久久久久免费精品电影-国产又粗又深又猛又爽又黄视频 | 久久久sese久久-欧美中文字幕在线一级-蜜臀久久99精品久久久久老师-精品久久人妻免费观看 | 日韩高清免费毛片观看-超碰大香蕉狠狠操-午夜精品久久久久久久99蜜桃-日韩美女一区二区三区四区 99精品综合在线观看-国产精品免费久久久久电影网-日韩av天堂一区二区三区在线-日韩av综合网导航 | 精品一区二区三区四区五区六区av-亚洲乱熟女二区三区-欧美v日韩v亚洲综合国产高清-蜜桃人妻久久av熟女 | 国产综合精品久久久久蜜臀-婷婷色亚洲五月在线国产精品麻豆-久久99乱子伦精品-国产日韩欧美精品久久 | 国产精品a62v久久久久久-国产成人自拍视频免费在线观看-欧美激情图片一区二区-精品区二区三区在线观看 | 亚洲成人人妻夜夜av-国产成人综合久久亚洲av-国产激情一区二区成人-国产伦精品一品二品三品在线看 | 人妻丝袜制服诱惑中文字幕-欧美日韩一区二区三区在-久久久av精品一区二区三区-97精品国产97久久久久久久久久 | 国内亚洲区在线观看-国产女主播一区二区三区在线观看-青青青青青青在线视频观看-亚洲欧美日韩在线激情 | 成人动漫精品一区三区-中文字幕精品乱码在线-欧美精品成人久久久久-丰满人妻免费一区二区三区 |